82 Yau Conj: 3 coly many min. surfaces in ANY closed CM .g $*$ Assume, from now on, that $3 \leq n+1 \leq 7$. # All min hypersurf are closed. smooth & embedded. # Thm $A:$ (Marques-Neves '17) (M^{n+1}, g) , Ricg > 0 (or satisfies "Frankel Property") \Rightarrow Yau's conj. holds. Last time Using the topology of $\mathcal{Z}_n(M; \mathbb{Z}_2)$, we can make sense of p-sweepouts, this gives the notion of volume spectrum of $(M^{n*}g)$, $\left\{ \omega_{p}(M,g)\right\} _{p\in\mathbb{N}}$. St. p-width $\overline{\bullet}$ ∞ ∞ Gromov-Guth: C. $p^{\frac{1}{n+1}} \leq w_p \leq C_2 p^{\frac{1}{n+1}}$ Vp "Proof of Thm A": $\int \frac{Ans(999)}{2} \text{ A } = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ E_{λ_1} is 2-dim'l.
modulo scaling $E_{\lambda_1} \sim S^1$ $\overline{Case 1}: \omega_p = \omega_{p+1}$ for some p L usternik - Schnirelmann theory \Rightarrow \exists ∞ 'ly many min. hypersurf. $Case 2: \omega_p < \omega_{p+1}$ for all P. Argue by contradiction. Suppose <u>Not</u>, ie. 3 only finitely many min hypersurfaces, say Σ_1 , ..., Σ_N for some $N \in \mathbb{N}$. Idea: min-max + counting

 \Rightarrow $\forall p \in \mathbb{N}$, $\omega_p = ||V_p|| (M)$ Min-max for some stationary varifold Vp in M. theory s.t. $V_p = n_1^{(p)} \Sigma_1 + n_2^{(p)} \Sigma_2 + \cdots + n_N^{(p)} \Sigma_N$ where $n_i^{(p)} \ge 0$. Frankel \Rightarrow $V_{\rho} = n_{\ell \varphi}^{(\rho)} \Sigma_{\ell (\rho)}$ Property • Fix $S>0$ s.t. $S < min$ $Area(S_i)^2$. Then. $W_p = ||V_p|| (M) = \eta_{\ell(p)}^{(p)}$ Avea ($\Sigma_{\ell(p)}$) > $S \cdot \eta_{\ell(p)}^{(p)}$ $n_{\mu_{\varphi}}^{(p)} \leq \frac{\omega_p}{\delta} \leq \frac{C_2}{\delta} P^{\frac{1}{n+1}}$ ⇒ Gramov- Guth By counting argument, $\forall p \in \mathbb{N}$. sub-linear in p linear in 1 $P = \# \{W_k : k = 1,...,P\} \le (\frac{C_2}{\delta} \cdot N) P^{\frac{1}{n+1}}$ contradiction arise! Case 2 Song '18 localized their arguments to prove: Thm $B: (Sons'18)$ Yan's conj. holds for ALL (M^{nn}, g) . (contradiction) $(\hat{\Omega}, g)$: non-cpt k 3 min-max theory not smooth at 22 "Idea of Proof": for mid with boundary (0.4) $L(L.-2)$ $"$ ω re" \mathbf{a} produce free boly $\boldsymbol{\Sigma}_1$ min surf & aΩ **Eruncote** Cyslindoical **Motor** extension \mathbf{a} $\hat{\Omega} = \Omega \cup (3\Omega \times 10, \infty)$ min.sut manifold v1. boundary g = g v product metric"

The core Ω satisfies Frankel property.

Can still define "cylindrical p-width",
$$
U_{\rho}(\hat{\Omega}, \hat{\beta})
$$
, by cpt enhancement
\nKey Estimate: $P \cdot Area(\Sigma_i) \leq U_P(\hat{\Omega}, \hat{\theta}) \leq P \cdot Area(\Sigma_i) + CP^{\frac{1}{111}}$
\nwhere $\Sigma_i = \text{component of } \partial \Omega$ with largest area.
\n \therefore arithmetic lemma \Rightarrow $Control (A, \hat{\theta}) \leq P \cdot Area(\Sigma_i) + CP^{\frac{1}{111}}$
\n $Weyl Law for the Volume Spectrum$
\n $Q: (Gromov) The volume spectrum $\{W_P(M, \hat{\theta})\}_{P \in \mathbb{N}}$ satisfy
\nsome Weyl Law?
\nMotivation: $(M^{\text{int}}; \hat{\theta}) \implies Loplace-Beltremi operators$
\n $- \Delta: C^{\text{int}}(M) \rightarrow C^{\text{int}}(M)$.
\nSpectrum of $(-\Delta) = \frac{\lambda_o}{\Delta} \leq \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \dots \rightarrow +\infty$
\n(i.e. $-\Delta f = \lambda f$)
\nWeyl Law: $\Delta r \cdot P^{-\frac{2}{111}} = a(n) \cdot Vol(M, \hat{\theta})^{-\frac{2}{111}}$
\nwhere $a(n)$: explicit dimensional Constant.$

$$
\int e. \quad \lambda_p \sim CP^{\frac{2}{n+1}} \quad \text{as } p \to \infty.
$$

Q: How does it relate to min-max theory?

$$
\frac{Min-max characterization of \n\lambda p :}{Denote: E(f) := \frac{\int_{M} |Tf|^{2}dV_{g}}{\int_{M} f^{2}dV_{g}} \qquad \text{Rayleigh quotient}^{n} \quad \text{quartic}^{n}
$$
\n
$$
\text{Dendg}: E(f) := \frac{\int_{M} |Tf|^{2}dV_{g}}{\int_{M} f^{2}dV_{g}} \qquad \left(\frac{Recall: harmonic functions}{(locally) minimes S} \int |Tf|^{2}\right)
$$
\n
$$
\text{Wpem, } \qquad \frac{\int_{P} (M,g) = \int_{Q \subset W^{2}(M)} f_{g} \qquad \text{Suppole} \quad f_{g} \in Q}{\int_{Q \subset W^{2}(M)} f_{g} \qquad \text{Suppole} \quad f_{g} \neq 0}
$$

Observe: $E(Cf) = E(f)$ for any constant C	
denoted	$E: P(W^{12}(M) \rightarrow R$
$ie: \lambda_{P}(M, g) = \inf_{\mathbb{R}P^{P} \subset \mathbb{P}W^{P} \cap \mathbb{Q}P} E(f)$	
Compute:	$\mathcal{Q}_{P}(M, g) := \inf_{\mathbb{R}^{2} \times \mathbb{Z} \setminus \mathbb{$

Thm D: (Trie-Marque-Never 18)
\nFor generate (M,9), min. hypermultipaces are "dense" in M.
\nThm E: (Maryue-Neves-Sony '18)
\nFor generate (M,9), min. hypersurf. arc "equi-distributed" in M.
\ni.e.
$$
\exists
$$
 sq. {2j}e in 1 min. hypersurf. in M et. 9 f e C° (M),
\ni.e. \exists sq. {2j}e in 1 min. hypersurf. in M et. 9 f e C° (M),
\n
$$
\frac{\int_{M} f dV_{M}}{W_{M}(M,g)} = \frac{\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{3}} f dA_{2j}}{\int_{\mathbb{R}^{3}} \text{Area}(2j)}
$$
\n"\nSkrth of Prof of Thm D: Idca: Weyl Law + perturbation argument.
\nDenote: $U_{M} := \int_{\mathbb{R}^{3}} \text{sinorth matrix on } M$ and $\int_{\mathbb{R}^{3}} \text{DH matrix}.$
\n $U_{M} := \int_{\mathbb{R}^{3}} \text{e} U_{M} : \exists \frac{\text{non-deg. min. hypersurf.} \Sigma \text{ in (M,g)}{\int_{\mathbb{R}^{3}} \text{DH matrix}}.$
\n
$$
\frac{U}{\text{open}} = \frac{U_{M}}{U_{M}} = \int_{\mathbb{R}^{3}} \text{U}_{M} \times \text{Var}.
$$

\n
$$
\frac{U}{\text{open}} = \int_{\mathbb{R}^{3}} \text{U}_{M} \times \text{Var}.
$$

\n
$$
\frac{U}{\text{open}} = \int_{\mathbb{R}^{3}} \text{Var} \times \text{Var}.
$$

\n
$$
\frac{U}{\text{open}} = \int_{\mathbb{R}^{3}} \text{Var} \times \text{Var}.
$$

\n
$$
\frac{U}{\text{open}} = \int_{\mathbb{R}^{3}} \text{Var} \times \text{Var}.
$$

\n
$$
\frac{U}{\text{open}} = \int_{\mathbb{R}^{3}} \text{Var} \times \text{Var}.
$$

\n
$$
\frac{U}{\text{open}} = \int_{\mathbb{R}^{3}} \text{Var} \times \text{Var}.
$$

\

B. White 41.17 : Bumpy Metric Thm => \exists g' close to g s.t.

. ALL min hypercurf. I in (M.g') is non-deg.

If some $\Sigma \cap U \neq \varphi$, then $g' \in \mathcal{U}_U \to \mathsf{Done}$.

Otherwise, ALL min. ngpersurf. in (M.9') misses U.

